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Crossover between special and ordinary transitions in random semi-infinite Ising-like systems
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We consider the crossover behavior between special and ordinary surface transitions in three-dimensional
semi-infinite Ising-like systems with random quenched bulk disorder. We calculate the surface crossover
critical exponentF, the critical exponents of the layera1 , and local specific heatsa11 by applying the field
theoretic approach directly in three spatial dimensions (d53) up to the two-loop approximation. The numeri-
cal estimates of the resulting two-loop series expansions for the surface critical exponents are computed by
means of Pade´ and Pade´-Borel resummation techniques. We find thatF, a1 , a11 obtained in the present paper
are different from their counterparts of pure Ising systems. The obtained results support the idea that in a
system with random quenched bulk disorder the plane boundary is characterized by a new set of critical
exponents.
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I. INTRODUCTION

In recent decades the remarkable progress in underst
ing the critical behavior of real physical systems has b
achieved from the application of the powerful field theore
cal methods and renormalization group~RG! approach to the
analysis of these systems. They can be used to perform
higher accuracy the numerical analysis of critical expone
and universal amplitude combinations for bulk phase tra
tions. There are a lot of publications related to this topic. T
first few of them are@1–5#. For brevity we do not present a
of them here. One can find a remarkable historical surve
@6#. The general review on the critical behavior of infini
randomly dilute spin models can be found in@7#.

Moreover, these methods have given the possibility to
vestigate the preasymptotic behavior of infinite syste
@8–10#. A series of field-theoretical methods developed a
tested in the studies of bulk phase transitions have been
tended to study the critical behavior of systems with bou
aries. General reviews on surface critical phenomena
given in Refs.@11–13#.

The presence of surfaces, which are inevitable in real s
tems, leads to additional complications. A typical model
study the critical phenomena in real physical systems
stricted by a single planar surface is the semi-infinite mo
@11#. As it is known from the field-theoretic analysis of th
continuumf4 model @12#, we can take the influence of th
surface into account by a quadratic surface term with coe
cient c0 , which describes the enhancement of the inter
tions at the surface, and additional surface fieldsh1 . There
are different surface universality classes, defining the crit
behavior in the vicinity of boundaries, at temperatures cl
to the bulk critical point@t5(T2Tc)/Tc→0#. Each bulk
universality class, in general, divides into several disti
surface universality classes. Three surface universa
classes, called ordinary (c0→`), special (c05csp* ), and ex-
traordinary (c0→2`), are relevant for our case@12–14#.
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They meet at a multicritical point (m0
2,c0)5(m0c

2 ,csp* ),
which corresponds to the special transition and is called
special point@15#.

Most theoretical studies usually concentrate their atten
on the investigation of critical behavior distinctly at the fixe
points c056` and c05csp* , respectively. At the presen
time, the theories of critical behavior of individual surfac
universality classes for pure isotropic systems@13,14,16–19#
and systems with quenched surface-enhancement diso
@20–22# have been well developed. General irrelevan
relevance criteria of the Harris type for the systems w
quenched short-range correlated surface-bond disorder
predicted in@20# and confirmed by Monte Carlo calculation
@21,23#. The investigation of the surface critical behavior
the semi-infinite systems with random quenched bulk dis
der at the ordinary and the special transitions have been s
ied by us@24,25#. The obtained results@24,25# have shown
that such systems are characterized by the new set of su
critical exponents in comparison with the case of pure s
tems.

It is well known that experimental systems are typica
characterized by the parameters different from values at
fixed point. However, our understanding of the situation
the crossover regions between different transitions is
complete. Investigations of the crossover behavior betw
different surface universality classes for pure isotropic s
tems have been published in a series of papers@18,19,26–
29#. However, at the present time the question about
picture in the crossover regions between the different tra
tions for the semi-infinite systems with random quench
bulk disorder is still open. In the present paper we restrict
attention to the simplest case with surface fieldh150 and
investigate crossover behavior between special and ordi
transitions for semi-infinite Ising-like systems with rando
quenched bulk disorder. Here it should be mentioned t
from the whole class of O(N) symmetricN-vector models in
d dimensions only the Ising model is the one of prima
interest, because it satisfies the Harris criterion for the s
cific heat exponenta(d)>0 @30#.

The proposed calculations are very important beca
they allow to understand the phenomenon of adsorption
©2003 The American Physical Society15-1
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fluid mixtures in contact with a wall, as well as the critic
behavior of so-called dilute magnets with the surfaces, wh
can be prepared by mixing an~anti!-ferromagnetic materia
with a nonmagnetic one.

The calculations are performed by applying a field the
retic approach directly ind53 dimensions up to the two
loop order approximation. The numerical estimates of
resulting two-loop series expansions for the surface cro
over exponentF from the special to the ordinary transitio
and surface critical exponents of the layera1 and local spe-
cific heatsa11 are computed by means of the Pade´ @32# and
Padé-Borel @33# resummation techniques. We find thatF,
a1 , a11 obtained in the present paper are different from th
counterparts of pure Ising systems.

II. MODEL

The Hamiltonian of the semi-infinite model under cons
eration with random quenched bulk disorder is given by

H52 1
2 (

^ i , j &Pbulk
Ji j pipjsisj2 (

^ i , j &Psurface
Ji j8 sisj , ~2.1!

wheresi and sj are classicalm-component spins located a
the lattice sitesi and j; a nearest-neighbor bond^ i , j & is said
to belong to the surface region if bothi Psurface andj
Psurface, in other cases they belong to the bulk region.
bulk interaction potentialJi j has the parallel to the plan
translational invariance in the underlying lattice. The surfa
interaction potentialJi j8 will never be invariant with respec
to lattice translations parallel to the plane or perpendicula
it. The random site variablepi and pj have the probability
distribution

P~pi !5pd~pi21!1p8d~pi !,

wherep8512p is the concentration of nonmagnetic imp
rities. As it is known, there are two possible ways to analy
the above random model. The first way is connected w
direct averaging over random disorder using the method
troduced by Lubensky@34#. The second possibility is to per
form the configurational averaging of the free energy us
the replica trickn→0,

F52T lim
n→0

1

n
~^Zn&conf21!,

whereZ is the partition function of a configuration given b
the Boltzman weighte2H, as it was first done in the reno
malization group~RG! calculations by Grinstein and Luthe
@35#. Performing the calculation in the spirit of the metho
introduced by Grinstein and Luther it is possible to show t
the random model~2.1! is thermodynamically equivalent t
the n-vector cubic anisotropic model (m51) with an effec-
tive Hamiltonian of the Landau-Ginzburg-Wilson~LGW!
type in semi-infinite space at the replica limitn→0
06611
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H~fW !5E
0

`

dzE dd21r F1

2
u¹fW u21

1

2
m0

2ufW u2

1
1

4!
v0(

i 51

n

f i
41

1

4!
u0~ ufW u2!2G1E dd21r

1

2
c0fW 2,

~2.2!

wherefW (x) is ann-vector field with the componentsf i(x),
i 51,...,n. Herem0

2 is the ‘‘bare mass’’ representing a linea
measure of the temperature difference from the critical po
value. The valuesu0 and v0 are the usual ‘‘bare’’ coupling
constantsu0,0 andv0.0. The constantc0 is related to the
surface enhancement, which measures the enhanceme
the interactions at the surface. It should be mentioned
thed-dimensional spatial integration is extended over a h
space R1

d [$x5(r ,z)PRdurPRd21,z>0% bounded by a
plane free surface atz50. The fieldsf i(r ,z) satisfy the Di-
richlet boundary condition in the case of ordinary transitio
f i(r ,z)50 at z50 and the Neumann boundary condition
the case of special transition:]zf i(r ,z)50 at z50 @14,17#.
The model defined in Eq.~2.2! is restricted to translations
parallel to the boundaring surface,z50. Thus, only parallel
Fourier transformations ind21 dimensions take place. I
should be mentioned that the LGW model works good
sufficiently low spin dilution 12p as long as the system i
not too close to the percolation limit.

In order to consider the critical behavior in the crossov
region and to calculate the crossover exponentF we should
consider correlation functions with insertions of the surfa
operatorfs

2,

G~N,M ;L1!~$xi%,$r j%,$Rl%!

5K )
i 51

N

f~xi !)
j 51

M

fs~r j !)
l 51

L1 1

2
fs

2~Rl !L ,

~2.3!

which involve N fields f(xi) at distinct pointsxi (1< i
<N) off the surface,M fieldsf(r j ,z50)[fs(r j ) at distinct
surface points with parallel coordinatesr j (1< j <M ), and
L1 insertions of the surface operator1

2 fs
2(Rl) at Rl with (1

< l<L1).
The corresponding parallel Fourier transform of the f

free propagator takes form

G~p,z,z8!5
1

2k0
Fe2k0uz2z8u2

c02k0

c01k0
e2k0~z1z8!G ,

~2.4!

with the standard notationk05Ap21m0
2. Here, p is the

value of parallel momentum associated withd21 transla-
tionally invariant directions in the system.

III. RENORMALIZATION

The formulation of the renormalization process for t
random systems introduced by Grinstein and Luther@35# is
5-2
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essentially the same as in the ‘‘pure’’ case@12,19#. From the
other side, as it is known from the theory of semi-infin
systems@12,14,16,19#, the bulk field f~x! and the surface
field fs(r ) should be reparametrized by different uv-fini
renormalization factors@12,19# Zf(u,v) andZ1(u,v). Thus
we havef5Zf

1/2fR and fs5Zf
1/2Z1

1/2fs,R . Besides, intro-

ducing the additional surface operator insertions (1/2)fW s
2(Rl)

requires additional specific renormalization factorZf
s
2

fs
25@Zf

s
2#21fs,R

2 .

The corresponding renormalized correlation functions
volving N bulk, M surface fields, andL1 surface operators
(1/2)fW s

2(Rl) can be written as

GR
~N,M ,L1!

~p;m,u,v,c!5Zf
2~N1M !/2Z1

2M /2Z
f

s
2

L1

3G~N,M ,L1!~p;m0u0 ,v0 ,c0!.

~3.1!

In the present paper we concentrate our attention on
correlation functionG(0,2,1)(p;m,u,v,c) involving two sur-
face fields and a single surface operator insertionfW s

2(Rl).
It is well known @19# that the uv singularities of the cor

relation functionG(N,M ,L1) can be adsorbed through a ma
shift m0

25m21dm2 and surface-enhancement shiftc05c
1dc. The renormalizations of the massm, coupling constant
u, v, and the renormalization factorZf are defined by stan
dard normalization conditions of the infinite-volume theo
@7,35–38#. In order to adsorb uv singularities located in t
vicinity of the surface, a surface-enhancement shiftdc is
required. In this connection the new normalization condit
should be introduced~see Appendix A!. Taking into account
the normalization condition~A3! and expression for renor
malized correlation function~3.1! it is possible to define the
renormalization factorZf2 in the form

@Zf
s
2#215Zi

]@G~0,2!~0;m0 ,u0 ,v0 ,c0!#21

]c0
U

c05c0~c,m,u,v !

.

~3.2!

It should be mentioned that the renormalization fac
Zi5Z1Zf is defined via the standard normalization conditi
~A2! ~see@19,25#!

Zi
2152m

]

]p2 @G~0,2!~p!#21U
p250

5 lim
p→0

m

p

]

]p
@G~0,2!~p!#21.

~3.3!

Equation~3.2! enables us to considerably simplify the ca
culation of the correlation functionG(0,2,1) with a surface
operatorfW s

2(Rl) insertion.
It should be noted that allZ factors in thed,4 case have

finite limits atL→` ~whereL is a large-momentum cutoff!.
All factors mentioned above depend on the dimension
variablesu andv. Besides, the surface renormalization fa
tors Z1 andZf

s
2 depend on bothu, v and the dimensionles

ratio c/m. The last dependence on the ratioc/m plays the
06611
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crucial role in the investigation of the crossover behav
from the special transition (c/m→0) to the ordinary transi-
tion (c/m→`).

IV. EXPANSION OF THE CORRELATION FUNCTION
NEAR THE MULTICRITICAL POINT

As was indicated before, the main goal of the pres
work is to investigate the scaling critical behavior betwe
special and ordinary transition and to calculate the crosso
exponentF. In this connection let us consider the sma
deviations Dc05c02csp* from the multicritical point.
The power expansion of the bare correlation functio
G(N,M )(p;m0 ,u0 ,v0 ,c0) in terms of this small deviationDc0
has a form

G~N,M !~p;m0 ,u0 ,v0 ,c0!

5 (
L150

`
~Dc0!L1

L1!
G~N,M ,L1!~p;m0 ,u0 ,v0 ,csp* !.

~4.1!

Based on Eq.~3.1!, we rewrite the right-hand part of Eq
~4.1! in terms of the renormalized correlation functions a
renormalized variableDc5@Zf

s
2(u,v)#21Dc0 and obtain

Zf
2~N1M !/2~Z1!2M /2G~N,M !~p;m0 ,u0 ,v0 ,c0!

5 (
L150

`
~Dc!L1

L1!
GR

~N,M ,L1!
~p;m,u,v !. ~4.2!

The preceding equation in straightforward fashion defin
the correspondent renormalized correlation functions defi
in the vicinity of the multicritical point

GR
~N,M !~p;m,u,v,Dc!

5Zf
2~N1M !/2~Z1!2M /2G~N,M !~p;m0 ,u0 ,v0 ,c0!.

~4.3!

It is easy to see that these correlation functions depend on
dimensionless variablec̄5Dc/m. Thus, the correlation func
tions GR

(N,M )(p;m,u,v,Dc) satisfy correspondent Callan
Symanzik equations@19,40#

Fm
]

]m
1bu~u,v !

]

]u
1bv~u,v !

]

]v
1

N1M

2
hf~u,v !

1
M

2
h1

sp~u,v !2@11h c̄~u,v !# c̄
]

] c̄G
3GR

~N,M !~p;m,u,v,Dc!5DGR , ~4.4!

where the inhomogeneous partDGR should be negligible in
the critical region similarly as that takes place in the case
infinite field theory. The resulting homogeneous equation d
fers from the standard bulk Callan-Symanzik~CS! equation
@41–43# in that it involves the additional surface-relate
function h1

sp and term2@11h c̄(u,v)# c̄(]/] c̄), where
5-3
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h1
sp~u,v !5m

]

]mU
FP

ln Z1~u,v !

5bu~u,v !
] ln Z1~u,v !

]u
1bu~u,v !

] ln Z1~u,v !

]u U
FP

~4.5!

and

h c̄~u,v !5m
]

]mU
FP

ln Zf
s
2~u,v !

5bu~u,v !
] ln Zf

s
2~u,v !

]u

1bv~u,v !
] ln Zf

s
2~u,v !

]v
U

FP

. ~4.6!

It should be mentioned that functionsbu(u,v), bv(u,v)
and hf(u,v) appearing in Eq.~4.4! are the usual bulk RG
functions. The symbol ‘‘FP’’ indicates that the above val
should be calculated at the infrared-stable random fixed p
~FP! of the underlying bulk theory.

V. SCALING CRITICAL BEHAVIOR AT THE
MULTICRITICAL POINT

The asymptotic scaling critical behavior of the correlati
functions can be obtained through a detailed analysis of
CS equations of Eq.~4.4!, as was proposed in@41,44# and
employed in the case of the semi-infinite systems
@19,28,29#. Our present investigations of the scaling critic
behavior are in complete analogy with the scheme mentio
above @19,44# ~see Appendix B!. Taking into account the
scaling form of the renormalization factorZf

s
2 of Eq. ~B1!

and the relationm;tn, we obtain forDc and for the scaling
variablec̄ the next asymptotic dependences

Dc;m2h c̄~u* ,v* !Dc0 , Dc;t2nh c̄~u* ,v* !Dc0 ~5.1!

and

c̄;m2@11h c̄~u* ,v* !#Dc0 , c̄;t2FDc0 , ~5.2!

where

F5n@11h c̄~u* ,v* !# ~5.3!

is the surface crossover critical exponent. Equation~5.2! ex-
plains the physical meaning of the surface crossover ex
nent as a value which characterizes the measure of devia
from the multicritical point. The second equations in Eq
~5.1! and~5.2! indicate about nonanalytic temperature dep
dence of the renormalized surface-enhancement devia
Dc. Taking into account the above-mentioned results fr
the CS equation we obtain the next asymptotic scaling fo
of the surface correlation functionG(0,2)
06611
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G~0,2!~p;m0 ,u0 ,v0 ,c0!

;m2g11
sp/nGR

~0,2!S p

m
;1,u* ,v* ,m2F/nDc0D

;t2g11
sp

G~pt2n;1,t2FDc0!, ~5.4!

whereg11
sp5n(12h i) is the local surface susceptebility ex

ponent andh i
sp5h1

sp1h is the surface correlation expone
@45#. It is easy to see that the asymptotic scaling critic
behavior of the surface correlation function for the syste
with random quenched bulk disorder is characterized by
new crossover exponentF(u* ,v* ), which belongs to the
universality class of the random model. In the next secti
we will calculate the surface crossover exponentF of the
semi-infinite systems with random quenched bulk disorde

VI. THE PERTURBATION SERIES UP TO TWO LOOPS

According to Eqs.~5.3! and ~4.6! the calculation of the
crossover critical exponentF is connected with the calcula
tion of the renormalization factorZf

s
2 via Eq. ~3.2!. The

usual bulk uv singularities which are present in correlat
function @G(0,2)(0)#21 can be removed by the method sim
lar to those reported in Refs.@19#, @24#, @37#, @39# with the
help of the standard mass renormalization procedure.

The second step of our calculation is to remove the
divergences which are connected with the presence of
surface in the system. The surface uv singularities of
inverse surface correlation function@G(0,2)(0)#21 can be re-
moved by performing the surface enhancement renorma
tion which is defined by Eq.~A1.1!. For convenience we can
rewrite the normalization condition of Eq.~A1! in the form

Zi@G~0,2!~0;m0 ,u0 ,v0 ,c0!#215m1c ~6.1!

for the inverse unrenormalized surface correlation funct
@G(0,2)(0)#21. Performing the differentiation of the above
mentioned normalization condition with respect to]/]c0 and
taking into account Eq.~3.2! we obtain for the renormaliza
tion factorZf2 the next equation

Zf
s
25

]c0

]c
, ~6.2!

wherec05c1dc and

dc5~Zi
2121!~m1c!1s0~0;m,c05c1dc!. ~6.3!

Here s0(0;m,c0) denotes the sum of loop diagrams of a
orders in @G(0,2)(0;m,u0 ,v0 ,c0)#21 ~see @19,25#!. Among
thems1 corresponds to the one-loop graph,s2 denotes the
melonlike two-loop diagrams

~6.4!
5-4
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s3 and s4 represent the reducible and irreducible two-lo
diagrams in@G(0,2)(0;m,u0 ,v0 ,c0)#21, respectively. Here
the full lines with labels ‘‘G’’ denote the full free propagato
of Eq. ~2.4!. Equation~6.2! can be resolved by using th
method of sequential iteration. As a result of the first orde
the perturbation theory~one-loop approximation! at general
spatial dimensionsd,4, we obtain

Zf
s
2

~1!
512

T1

2

p2~d21!/2

16

G~e!

GS e11

2 D
3F122~11e!/2

2F1S 32e

2
;

11e

2
;

31e

2
;

1

2D G ,
~6.5!

where 2F1(¯) is the hypergeometric function and coef
cient T15@(n12)/3#ū01 v̄0 includes dimensionless effec
tive expansion parametersū05u0m2e and v̄05v0m2e

which are identified through the standard vertex renormal
tion. In the case of massive theory the value ofe is not
necessarily restricted to be small and the above express
hold for any relevant dimensionsd,4. The presence of the
Euler gamma functionG~e! indicates the existence of dimen
sional poles 1/e whene→0.

According to Eqs.~3.2! and ~6.5! for h c̄ at a one-loop
order in the case of general dimensions up tod54 we obtain

h c̄5
T1

2

e

11e
p2d/222dG~e/2!

3F122~11e!/2
2F1S 32e

2
;

11e

2
;

31e

2
;

1

2D G .
~6.6!

At the random fixed point of orderO(Ae) @46# (K4u*
523A6e/53, K4v* 54A6e/53, where the geometric nor
malization factorK451/(8p2)), Eq. ~6.6! in the limit e→0
leads to

lim
e→0

h i
sp5 lim

e→0
0 h c̄52A6e

53
. ~6.7!

This result coincides with that obtained by Ohno and Oka
@46#. At e→0 for the surface crossover exponentF in one-
loop calculations we obtain

F5
1

2
2

1

4
A6e

53
. ~6.8!

In the case of three spatial dimensions (d53) the renormal-
ization factorsZ1 and Zf

s
2 are finite and their one-loop ex

pressions do not coincide. At one-loop order, we obtain

h c̄'20.596 andF50.286. ~6.9!

In the next order of the perturbation theory we restrict o
attention only to the case ofd53 dimensions. Thus after th
06611
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surface-enhancement renormalization and performing
Feynman integrals in analogy with@19,25# and carrying out
the vertex renormalizations of bare dimensionless parame
ū05u0/8pm and v̄05v0/8pm

ū05ūS 11
n18

6
ū1 v̄ D ,

v̄05 v̄S 11
3

2
v̄12ūD , ~6.10!

we obtain a second-order series expansion for the renor
ization factorZf

s
2 in terms of new renormalized couplin

constantsū and v̄,

Zf
s
2~ ū,v̄ !511

n12

3 S ln 22
1

4D ū1S ln 22
1

4D v̄

1
n12

3
C~n!ū212C~n!ūv̄1C~1!v̄2,

~6.11!

whereC(n) is a function of the replica numbern, defined by

C~n!5A2B2
n

2
ln 21

n12

2
ln2 21

2n11

12
, ~6.12!

and A50.202 428,B50.678 061 are integrals originatin
from the two-loop melon-like diagrams. Combining th
renormalization factorZf

s
2 with the one-loop pieces of theb

functions b ū(ū,v̄)52ū(12@(n18)/6#ū2 v̄) and b v̄(ū,v̄)
52 v̄(12(3/2)v̄22ū) according to Eq.~4.6!, we obtain the
desired series expansion forh c̄ ,

h c̄~u,v !522
n12

n18 S ln 22
1

4Du2
2

3 S ln 22
1

4D v

28F3
n12

~n18!2 D~n!u21
2D~n!

n18
uv1

D~1!

9
v2G ,

~6.13!

where

D~n!5A2B1
n12

3
ln2 22

n11

2
ln 21

17n122

96
,

~6.14!

and renormalized coupling constantsu andv, normalized in
a standard fashionu5@(n18)/6#ū and v5(3/2)v̄. In com-
mon, Eq.~6.13! gives a result for the model with the effec
tive Hamiltonian of the Landau-Ginzburg-Wilson type wi
cubic anisotropy in the semi-infinite space~2.2! with a gen-
eral numbern of order parameter components. Our calcu
tions are connected with the investigation of the critical b
havior of semi-infinite random Ising-likesystems by taking
the replica limitn→0. Hence, we obtain
5-5
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TABLE I. Surface critical exponents involving the RG functionh c̄ at the Jug fixed pointu* 520.60509,v* 52.39631~two-loop order!.

Exp.
O1

O2

O1i

O2i
@0/0# @1/0# @0/1# @2/0# @0/2# @11/1# @1/11# @R# Ri

21 f (a1 ,n,h)

h c̄ 20.8 21.5 0.00 20.574 20.365 0.150 20.152 20.281 20.268 20.313 20.280 20.164
a1 21.7 27.6 0.50 0.051 0.190 0.312 0.220 0.201 0.213 0.185 0.211 0.21
a11 21.1 22.8 0.00 20.574 20.365 20.036 20.268 20.324 20.306 20.351 20.313 20.222
F 20.5 20.5 0.50 0.375 0.389 0.652 0.658 0.451 0.452 0.444 0.445 0.56
e
.

lin

th

el

e

bt
w
im

e
e
e
i

si

int

nd
and

ce of

the
sec-
xi-

ical
of
ble I

ace
s

ost

-
i-
le I.
s of
ical

se-
om

le

of
s of
h c̄52
1

2 S ln 22
1

4Du2
2

3 S ln 22
1

4D v

28F 3

32
D~0!u21

D~0!

4
uv1

D~1!

9
v2G . ~6.15!

The knowledge ofh c̄ gives access to the calculation of th
crossover critical exponentsF via the scaling relation of Eq
~5.3!. Besides, we can calculate the critical exponentsa1 and
a11 of the layer and local specific heats via the usual sca
relations@12#

a15a1n211F512n~d222h c̄!,

a115a1n2212F52n~d2322h c̄!. ~6.16!

The above critical exponents should be calculated at
standard infrared-stable random fixed~FP! point of the un-
derlying bulk theory @47# u* 520.605 09 and v*
52.396 31, as it is usually accepted in the massive fi
theory.

VII. NUMERICAL RESULTS

For each of the surface critical exponents mention
above and the crossover exponentF we obtain from Eq.
~6.15! at d53 a double series expansion in powers ofu and
v truncated at the second order@48#. In order to perform the
analysis of these perturbative series expansions and to o
accurate estimates of the surface critical exponents a po
ful resummation procedure must be used. One of the s
plest ways is to perform the double Pade´ analysis@32#. This
should work well when the series behaves in lowest ord
‘‘in a convergent fashion.’’ Another way is to perform th
double Pade´-Borel analysis@33# for these series. The usag
of the Pade´-Borel resummation procedures are possible
the case when the terms in the series are alternating in
06611
g

e

d

d

ain
er-

-

rs

n
gn

@4#. The results of our calculations at Jug random fixed po
@47# are represented in Table I. The quantitiesO1 /O2 and
O1i /O2i represent the ratios of magnitudes of first-order a
second-order perturbative corrections appearing in direct
inverse series expansions. The larger~absolute! value of
these ratios indicate about the better apparent convergen
truncated series@19#.

The values@p/q# ~wherep, q50, 1! in Table I are simply
Padéapproximants which represent the partial sums of
direct and inverse series expansions up to the first and
ond order. The nearly diagonal two-variable rational appro
mants of the types@11/1# and@1/11# give atu50 or v50 the
usual@1/1# Padéapproximant@32#. The results of the Pade´-
Borel analysis of the directR and the inverseR21 series
expansions give numerical estimates of the surface crit
exponents with a high degree of reliability in the frames
the present approximation scheme. One can see from Ta
that the largest~absolute! value of the quantitiesO1 /O2 and
O1i /O2i exists for the inverse series expansion of the surf
critical exponenta1 . It indicates that from the inverse serie
expansion for the surface critical exponenta1 , which repre-
sents the best convergence properties, we obtain the m
reliable estimate. Substituting this valuea150.211 together
with the standard bulk valuen50.678 into the scaling rela
tions ~5.3! and~6.16!, we have obtained the remaining crit
cal exponents that are present in the last column of Tab
The deviations of these estimates from the other estimate
the table give a rough measure of the achieved numer
accuracy.

The results of the similar analysis of the perturbative
ries expansions of the surface critical exponent at rand
fixed pointu* 520.6524,v* 52.4203@49# are presented in
Table II for comparison. In a similar way the most reliab
estimate is obtained for an inverse series expansion ofa1 .
The results of substitutinga150.208 andn50.679 into scal-
ing laws~5.3! and~6.16! are presented in the last column
Table II. As is easy to see from a comparison of the result
Table I and Table II, the difference in the ways of theb
8

6

TABLE II. Surface critical exponents involving the RG functionh c̄ at the fixed pointu* 520.6524,v* 52.4203~two-loop order!.

Exp.
O1

O2

O1i

O2i
@0/0# @1/0# @0/1# @2/0# @0/2# @11/1# @1/11# @R# Ri

21 f (a1 ,n,h)

h c̄ 20.82 21.55 0.0 20.570 20.363 0.124 20.168 20.287 20.272 20.318 20.283 20.166
a1 21.82 29.56 0.5 0.054 0.191 0.300 0.215 0.197 0.209 0.182 0.208 0.20
a11 21.12 23.08 0.0 20.570 20.363 20.060 20.278 20.331 20.311 20.357 20.317 20.226
F 20.47 20.50 0.5 0.376 0.389 0.641 0.643 0.449 0.450 0.442 0.444 0.56
5-6
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functions resummation do not have essential influence on
values of the surface critical exponents. The difference
tween the final results of Table I and Table II are 1.2%
h c̄ , 1.4% fora1 , 1.8% fora11, and 0.2% forF.

For evaluation of the reliability of the results obtained
the two-loop approximation, we have performed an ad
tional calculation of the surface critical exponents froma1
50.211 and six-loop perturbation theory results@7# for a
bulk critical exponent of the correlation lengthn50.678~10!.
We have obtainedh c̄520.164, a11520.222 and for the
surface crossover critical exponentF50.567. This indicates
the good stability of our results obtained in the frames of
two-loop approximation scheme.

VIII. SUMMARY

We have studied the crossover critical behavior betw
special and ordinary surface transitions of three-dimensio
quenched random semi-infinite Ising-like systems. We fi
that the asymptotic scaling critical behavior of the surfa
correlation function for the systems with random quench
bulk disorder is characterized by the crossover expon
F(u* ,v* ), which belongs to the universality class of th
random model. We have calculated the crossover critical
ponentF and critical exponents of the layera1 and local
specific heatsa11 by applying the field theoretic approac
directly in three dimensions up to the two-loop approxim
tion. We have performed a rational double Pade´ and double
Padé-Borel analysis of the resulting perturbation series
pansions for the surface critical exponents in order to find
best numerical values. The final numerical values of the
face critical exponentsa1 , a11 and crossover exponentF for
the systems with quenched random bulk disorder in
frames of the present approximation scheme are

a150.211, a11520.222, F50.567. ~8.1!

These values evidently different from their counterparts
pure Ising systems@19,39#

a150.279, a11520.182, F50.539. ~8.2!

We suggest that the obtained results could stimulate fur
experimental and numerical investigations of the surf
critical behavior of random systems.
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APPENDIX A

In order to specifydc, Z1 , and Zf
s
2, we require that

@19,39#

GR
~0,2!~p;m,u,v,c!up505

1

m1c
, ~A1!
06611
he
e-
r

i-

e

n
al
d
e
d
nt

x-

-

-
e
r-

e

f

er
e

]GR
~0,2!~p;m,u,v,c!

]p2 U
p50

52
1

2m~m1c!2 , ~A2!

and the correspondent normalization condition for the co
lation functionG(0,2,1) with the insertion of the surface op
erator (1/2)fs

2,

GR
~0,2,1!~p;m,u,v,c!up505

1

~m1c!2 . ~A3!

Equation~A3! is motivated by the fact that the bare co
relation functionG(0,2,1)(0;m0 ,u0 ,v0 ,c0) may be written as
derivative 2(]/]c0)G(0,2)(0;m0 ,u0 ,v0 ,c0). This equation
simplifies considerably the calculation of the correlati
function with insertions of surface operator (1/2)fs

2.
From Eq.~A1! it is easy to see that the special point

located atm5c50, because at this point the divergence
the bulk and the surface correlation length and susceptib
is observed. Atc50 the surface normalization conditions a
simplified and yieldc05csp* . This point corresponds to th
multicritical point (m0c

2 ,csp* ) at which special transition take
place. On the other hand, the above-mentioned equation
plies also that the surface correlation length and the sus
tibility are finite at the ordinary transition, because in th
case we havec.0 whenm→0. This latter case correspond
to the situation when the surface remains ‘‘noncritical’’ at t
bulk transition temperature.

APPENDIX B

As it is usually accepted in the massive field theory, t
variable m is identified with the inverse bulk correlatio
length j21 and is proportional to tn, where t5(T
2Tc)/Tc . Following the scheme proposed in@44#, we can
perform the integration of Eq.~4.5!, Eq. ~4.6!, and expres-
sions for the RG functionsbu(u,v), bv(u,v), andhf(u,v).
This gives the following asymptotic dependencies atm
→0:

uu2u* u;mvu where vu5bu8~u* ,v* !,

uv2v* u;mvv where vv5bv8~u* ,v* !,

Zf;mh where h5hf~u* ,v* !,

Z1;mh1
sp

~u* ,v* !,

Zf
s
2;mh c̄~u* ,v* !. ~B1!

As follows from these expressions, the variablesu andv
deviate from their fixed valuesu* andv* by different scal-
ing laws with various values ofvu andvv . The scaling laws
@see Eq.~B1!# have the similar form as in the case of the pu
systems@19#, but renormalization factors are characteriz
by another value of the critical exponents which belong
the universality class of random model.
5-7
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